- Exercises -

1. Show that the equation $x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}=27$ implicitly defines a function $x_{2}=G\left(x_{1}\right)$ in a neighborhood of the point $(3,3)$. Find G^{\prime} expressed in terms of x_{1} and x_{2}.
2. Textbook 9.4 p. 434
3. Regular points of a function. Textbook 9.7 (b) (c) p. 435
4. Consider the system in \mathbb{R}^{3}

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-2 z^{2}=0 \\
x^{2}+2 y^{2}+z^{2}=4
\end{array}\right.
$$

Show that for x close to 0 , there exist positive functions $y(x)$ and $z(x)$ s.t. $(x, y(x), z(x))$ is a solution. Express y^{\prime} in terms of x, y; express and z^{\prime} in terms of x, z.
5. A global implicit function. Show that the equation $y^{3}+\left(x^{2}+1\right) y+x^{4}=0$ implicitly defines a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto y$ of class \mathcal{C}^{1}.
6. The folium of Descartes. Let c be a positive number. We defines $F(x, y)=x^{3}+y^{3}-3 c x y$ for every (x, y). The folium of Descartes is the curve \mathcal{C} defined by $F(x, y)=0$.
(a) Find all points of \mathcal{C} in a neighborhood of which you can solve the equation $F(x, y)=0$ for y as a function $G(x)$ or for x as a function $H(y)$.
(b) Find the derivative of G at the points found in the previous question. Find those values of x where $G^{\prime}(x)=0$. Same for H.
(c) For every $t \neq-1$, we put $\phi(t)=\left(\frac{3 c t}{1+t^{3}}, \frac{3 c t^{2}}{1+t^{3}}\right)$. Show that ϕ is a parametrization of the folium, i.e. that the curve \mathcal{C} is the set $\phi(\mathbb{R} \backslash\{-1\})$.
(d) Show that the line of equation $x+y=-c$ is an asymptote of \mathcal{C}. Sketch \mathcal{C}.

